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NOMENC LAT URE

f= pulse frequency, pulses/sec

G. = transfer function of ith component in control loop,
1 dimensionless

= moment of inertia (e. g. , about pitch axis), slug-ft 2

I - moment of inertia about roll axis, slug-ft2

x

I = moment of inertia about yaw axis, slug-ft2
z

= thrust impulse single corrective torque application, lb-sec

T total thrust impulse over operating time, TTo lb-sec

K = stabilizing or destabilizing torque parameter, dimensionless

KD = position gain, dimensionless

K = rate gain, sec

K. = gain of ith component in control loop, dimensionless1

I = moment arm, ft

m = modulation factor (m = 1 -. constant thrust), dimensionless

m = threshold modulation factor, dimensionless

M = steady external torque, ft-lb

aM/ae = stabilizing or destabilizing external torque coefficient,
ft-lb/radian

n number of pulses required to reverse angular rate,
dimensionless

N = total number of thrust impulses in time, TT, dimensionless

S= rate measurement threshold, radians/sec
-I

s = Laplace operator, sec

t = time, sec

iii



At thrust pulse width, sec

Atmin = minimum thrust pulse width, sec

tD = coast time with destabilizing external torque, sec

t = coast time without external torque, sec

o coast time with destabilizing external torque, sec

t = coast time with steady external torque, sec

T = thrust pulse magnitude, lb

TT = system operating time, sec

v = thrust generator threshold, dimensionless

WT = total propellant used in time TV lb

6 = position measurement threshold, radians

= error signal, radians

e = vehicle Euler angle, radians

e = position measurement signal, radians

A
e = Laplace transformed position, radians

0 = initial condition in 6 (beginning of coast), radians

e = position command signal, radians
C

S= vehicle angular rate, radians/sec
.1

e = rate measurement signal, radians/sec

= initial condition in e (beginning of coast), radians/sec

S= angular rate reversal magnitude, radians/sec
-2

X = stabilizing or destabilizing torque parameter, sec

2R steady external torque parameter, radians/ sec

Lc = critical value of steady torque parameter, radians/sec
2
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= relative propellant consumption - destabilizing torque,
dimensionles's

OD = relative propellant consumption - destabilizing torque,
dimensionless

= relative propellant consumption - stabilizing torque,
dimensionless

= relative propellant consumption - steady torque,
dimensionless

o = orbit frequency, radians/sec
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I. DESCRIPTION

The single-axis attitude control system described by the diagram in

Figure I is now considered. The position and rate measurements are con-

sidered to have independent and symmetric threshold values 6 and i, re-

spectively. A threshold error signal of magnitude v is necessary to obtain

an output from the torque generating device.

The authors consider in particular that the thrust which generates

control torque is pulse modulated and the modulation factor is

m = fat

It is possible to modulate the thrust with pulse frequency f or pulse

width At, or both. Figure 2 depicts the meaning of these quantities along

with T the thrust pulse magnitude. The time average thrust will obviously

saturate for m = 1 but this condition will not be a point of concern in this

paper.
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Fig. 1. Attitude control system with nonlinearities.
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Fig. 2. Reaction jet thrust wave form.



II. SWITCH LINES

The following relations can be written from Figure 1 by inspection

0, 191 < 6 (la)

e - 6, a > (ib)

o + 6, 9 < - 6 (Ic)

0'. 1 1 < f(?a)

.! = - f, 6 > f (2b)

+ f, < f (2c)

OP < v(3a)

M = KD  v) + m > v (3b)

KD (E + v) - mo, ,< - V (3c)

K+ KR  (4)-E = e + DD 9 (4)

The equations of the lines, referred to as switch lines, in the phase

plane that separates the coasting region from regions where corrective torque

is applied may be determined by setting m'± rn 0 = 0 in Eqs. (3b) and (3c).

The equations of the switch lines can best be found by constructing a table of

all the combinations of signs of 9, 6, and e (see Table I). A set of equations

for the 9 and e signals at or above threshold are obtained from Eqs. (lb),

(1c), (Zb), (Zc), (3b), (3c), and (4) (see column B, Table I). Another set is

obtained by letting 0 drop below threshold or (j * f) = 0 in the equations of

column B (see column C). The remaining possible equations are obtained by

3
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letting .E drop below the threshold or (e * 6) = 0 in the equations of column

B (see column D). Some of the combinations of signs are not possible and

are so indicated. This happens because of the inequalities in the mother set

of equations. The segments of the lines defined by the equations in columns

B, C, and D which enclose the coast region are plotted in the phase plane

diagram of Figure 3.
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III. POWERED TRAJECTORIES

It is seen that the switch lines defined by Figure 3 and Table I separate

regions in the phase plane where the trajectories differ in character. Outside

the coast region are powered regions where the trajectories are those where

corrective torque is applied. The following trajectory descriptions apply to

the system under consideration without external torques.

Regions 1, 7, 8, and 14 contain rectilinear portions of the trajectories

where the control system operates without benefit of position feedback. Re-

gions 2, 5, 6, 9, 12, and 13 contain the second order system spiral portions

of the trajectories. Regions 3, 4, 10, and II contain the elliptical portions

of the trajectories where the system operates without benefit of rate feedback.

The regions of importance so far as limit cycles are concerned are the

coast region and the elliptical trajectories regions, for it can be deduced

that the steady limit cycle of the system being considered is determined by

i and (6 + v). The vehicle will coast at angular velocity * i until

( = * (6 + v), at which time corrective torque is applied without benefit of

rate feedback, giving rise to an elliptical trajectory symmetrical about the

0 axis. The corrective torque is removed when the point on the elliptical

trajectory coincides with a point on a switch line. It should be pointed out

that the power'ed portion of the limit cycle trajectories is elliptical only if*

the threshold modulation factor m = 0. If m 0 0, the trajectories tend

to be parabolic and are perfect parabolas if m = m 0 = constant. When pulse

modulation is used, the minimum angular momentum impulse applied to the

vehicle by a single thrust pulse should be much less than I or

T 1At mi n = I A < < IU (5)
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in order that the foregoing comments apply. If this is not the case, the

mean drift velocity will be determined by

T lAt=n m rainn m m (6)

where n is the integer number of pulses required to reverse angular rate.

Since n should be an integer, it will be some value higher than the reversing

impulse or

n > U ~ (7)

m min

Ideally n should be the next integer value above the value of the right side

of the above expression. An interesting thing to note is that the number of

pulses should lie between that required to insure a change of sign of 9 and

that required to change G from i to -i. Thus

Iif Ii.
I-t.< n < z 2 (8)

m in m min

and, therefore, the mean drift velocity will be less than i. For n large,

the torque control becomes almost continuous (small granularity), n ap-

proaches the right side of Eq. (8) and the drift velocity is approximately i.

For n = 1 and UI/T tAt nearly equal to but less than unity, the meanm ri

drift velocity approaches i/Z. It would appear that by proper design, an

attitude control system using pulse modulation might have a built-in safety

margin of gas or propellant supply (in the absence of external torque).

8



Figure 4 illustrates a pulse frequency modulation system response

trajectory in the phase plane where the mean drift velocity is slightly greater

than i:/Z. The pulse width in this case is constant. Figure 5 illustrates a

pulse m-odulation system response trajectory when the pulse width and pulse

frequency are both modulated. Position and rate thresholds are not shown

in this figure.
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Fig. 4. Pulse frequency modulation system response.
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Fig. 5. Pulse frequency and width modulation system response.
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IV. COAST TRAJECTORIES

In the absence of external torques, the vehicle will coast with constant

angular velocity across the coast region from switch line to switch line and

from left to right in the upper half of the phase plane and from right to left

in the lower half of the phase plane.

The characteristics of the coast trajectories when the vehicle is subject

to external torques can be determined by solving the vehicle's equation of

motion. The equation of motion of the coasting vehicle with a stabilizing or

destabilizing torque and a steady torque acting on it is

- am 9 M (9)a() s

where OM/E@ = stabilizing or destabilizing torque coefficient (ft-lb/radian)

and M s = steady torque (ft/lb). The coefficient OM/30 is defined as the

moment (stabilizing or destabilizing) per unit angle 9.

Considering aerodynamic and gravitational moments acting in the pitch

plane on a circular orbital vehicle witn pitch attitude deviation 0 from the

local horizontal in the direction of motion, the torque coefficient, aM/a0,

can be expressed as

8M
=- M 0 - o (Ix I)

where M e is the aerodynamic stability derivative with respect to 9, I z is

the yaw moment of inertia, I is the roll moment of inertia, and W is thexo
vehicle orbit frequency. The second term on the right of this relation is the

torque per unit angle 0 resulting from the gravity gradient as presented and

discussed by Frye and Stearns (Ref. 1). As is pointed out by Frye and

12



Stearns, Davis (Ref. 7) has shown that this term arises from a combination

of the effects of torque due to gravity gradient and centrifugal force of

orbital motion. More general relations for the gravity torques, from which

one can determine the gravitational torque derivative, are available in the

literature (Refs. 3, 4, 8, 13, 14). The aerodynamic stability derivative

may be deduced from the normal force and axial force characteristics of

the vehicle resulting from what may be considered Newtonian or free mo-

lecular flow as is discussed by Frye and Stearns (Ref. 1), and DeBra and

Stearns (Refs. 5, 6).

A steady torque with respect to body axes could arise from solar

radiation pressure or winds. In this case, the torque would be "steady"

only during the time of year when the orbit plane of an earth satellite would

be normal to Earth-sun radius vector. The solar pressure torque would be

constant for a vehicle in a circular heliocentric orbit where one axis is kept

aligned with the velocity vector. It can also arise from gas ventage, leakage,

and from steady aerodynamic moments in a vehicle whose axis of symmetry

is not nominally aligned with the orbital velocity vector. (Refs. 1, 4, 10,

11, 12)

Equation (9) may be written as

2 + (10)

where

z A aM/Be
=

m s
(11)
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If Eq. (10) is divided by

Odd 29G + (12)
e 76

Equation (12) integrates directly to

02 - X 2 = constant (13)

If the sign of X 2 is positive and i= 0, the external torque is destabilizing

and the result is the equation of a family of hyperbolas with center at the

origin and asymptotes with slope ± X. These hyperbolic trajectories exist

only within the coast region of the phase plane. Figures 6 and 7 show the

two types of limit cycles which are possible assuming that higher order

effects will preclude steady limit cycles inside the ones shown. In Figure 6

the coast trajectories resemble the constant 0 condition which is obtained

with no torque. In Figure 7 the coast trajectories are such that 0 always

has a mean value other than zero and never reaches zero (unless the trajec-

tory follows the asymptotes).

If the sign of X 2 is negative and p. = 0, the external torque is stabi-

lizing and we have the equation of a family of ellipses which describe the

trajectories in the coast region. Figure 8 illustrates the lowest frequency

steady limit cycle possible with stabilizing torque. Elliptical trajectories

are possible inside the one shown but it is assumed that spurious torques

and lags in a practical system will eventually open these out to the one shown.

If X = 0 and p. is positive, the equation of a family of parabolas is

obtained. These parabolas open to the right in the phase plane. Figure 9

illustrates the steady limit cycle obtained assuming that higher order effects

will open out the trajectories that are possible inside the one shown. For R

14



smaller than that of Figure 9, the coast trajectory flattens until the apex of

the parabola coincides with the =- (6 + v) switch line and further re-

duction of t. causes corrective torque application on the left side of the

phase plane.

Had the steady torque term p. not hen neglected, in the destabilizing

and stabilizing external torque types of *f-ciectories mentioned in the fore-

going, its effect would have been to shift the hyperbola's and ellipse's centers

along the 0 = 0 axis. Figures iu and i show this effect and the resulting

limit cycle trajectory shapes.

15
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Fig. 6. "Small" destabilizing torque trajectory

Fig. 7. "Large" destabilizing torque trajectory
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V. COAST TIME

The ratio of the time of corrective torque application to the drift or

coasting time in a practically designed system will likely be of the order of

10 percent or less. Thus the period of the limit cycle in most cases will be

dependent primarily upon the drift time. This time can be determined for a

system with external torques and can be compared with the drift time of a

system without external torques to obtain an estimate of relative propellant

consumption since the amount of propellant expended over a time interval of

operation of the system will be proportional to the frequency of the limit

cycle.

Equation (10) may be solved subject to the initial conditions that exist

at the beginning of the drifting portion of the limit cycle.

9 (o) 0

and (14)

6(o) 0

Definition is given of

L 19(t)l = 09(s)

Taking the Laplace transform of Eq. (10)

e

o (s - X2 ) e s ( - X)

0

18



Finding the inverse Laplace transform of Eq. (15) obtains for X2 positive

(t) = cosh" X t + 0 sinh X t +cosh X t 1], > 0 (16)
0. O0 4

0

2
and for X negative

9 6 o .

o(t) = cos lXo t + sin. lXIt + [I- cos Ixit], x < 0 (17)

The coast time interval from the initial conditions to 9 = 0 is obtained by

setting 9 (t) = 0.

A. Destabilizing External Torque, X > 0 with . = 0

The coast time between corrective torque application from Eq. (16)

for the limit cycle type shown in Figure 6, where p. = 0, is

2
tD = tanh- (18)

where

K = x 0 (19)
0

Using the identity

tanh -1 x= In 1+ x

19



Eq. (18) can be expressed as

tD -) (20)

which corresponds to the condition K > 1.

The coast time between corrective torque application for the limit

cycle shown in Figure 7 is determined by differentiating Eq. (16) and setting

(t 0

obtaining

t I (1+ K) (21)D2 XI n --

Which corresponds to the condition 0 < K < 1.

Comparing Eqs. (20) and (21) it can be seen that in general

tD n K + I1  K > 0 (22)tD =T R i--lT I I

B. Stabilizing External Torque, X < 0 With L = 0

The coast time between the switch lines for X2 < 0 and p. = 0 is

obtained from Eq. (17)

t s = ]v tan 1  (23)
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2C. Steady External Torque, p. 0 with X = 0

The coast time for the type of trajectory shown in Figure 9 can be

found by differentiating Eq. (17) and setting X = 0 and e = 0. This results

in the drift time between corrective torque applications

z6
t 0 (24)
p. p.

When p. is small enough that corrective torque is applied on both sides

of the phase plane diagram, Eq. (17) is again differentiated, setting X = 0

and setting

0=4 4 °  (Z5)

00

to find the drift time. Equation (5) is obtained from Eq. (13) with E -0 -0

where the constant is evaluated using the initial conditions 6 = 0 and
06= -G) . The result is obtained

* 0

t = _ 1 ; - (Z6)
~ 4;o)

for the coast time between corrective torque applications. The value of pL

for which the apex of the parabolas coincides with G = - 6 is obtained0

from Eq. (Z5) with 9 = 0. It is what may be termed the critical value oI

the steady torque parameter

0z

o (27)
0

21



VI. RELATIVE PROPELLANT CONSUMPTION

If it is assumed that corrective torque application time is negligible

compared to coast time, the propellant consumption will be proportional to

corrective torque application frequency or inversely proportional' to coast

time for a given operating time. The relative propellant consumption 0 is

defined as (propellant consumption with external torque) + (propellant con-

sumption without external torque).

A. Destabilizing External Torque

For the case of destabilizing external torque

4 tD] =0 (Z8)
OD tD

From Eq. (21)," using L'Hospital's rule

2Z

tZ - t (29)t Q lira tD = 0

0

which could have been deduced directly.

Using Eqs. (22) and (29) in Eq. (28)

=2 In - K > 0 (30)

It is of interest to see how propellant consumption varies with the

destabilizing torque coefficient. Accordingly 0 is plotted vs. 1/K 2 in

22



Figure. 12. This figure shows a theoretical relative propellant consumption

of zero for K = 1. Praccically, less impulse than for the case of a system

without torque might be expected if

0 < < 1. 44
K2

or (31)

0.83 < K< oo

However, this presumes that the point (9 o , 9 0) at which corrective

torque is applied, is the same for both conditions (i. e. , with torque and

with no torque). This behavior is seen in the dashed curve of Figure 13.

The case is examined where there is a given value of torque and

hence X. It should be possible to vary K by virtue of the possibility of

adjusting 0 /9 The question may reasonably be asked: What effect does

the choice of switching point (0 , 9 ) have on propellant consumption? To

answer this it mny be noticed from Figure 12 that K = 0. 83 gives the same

propellant consumption as the case of zero torque (it may be considered

unity consumption). The ratio is formed

,io/9 0 0. 83X T n -1 K -0.83
9D - t] -1 InK + 1 (32

D= KX

23
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or

4 1
9D=2.4 K+1(33)

In

This relation is plotted as curve 1 of Figure 13 and is

propellant consumption when switcl-id -t 9 /0 KX
0 0

propellant consumption when switches at 0 /0 = 0. 83k

propellant consumption when switched at 9 /o K(o 0 (34)

propellant consumption when switched at 0 /80 with X = 0

From the solid curve of Figure 13, one sees that for a given value of

torque

0. 83 < K < 1.2 (35)

in order that consumption be less than that obtained with zero torque. It is

apparent from Eq. (28) that

D (K) = (36)

Something might be gained from this observation; i. e. , if the torque coeffi-

cient is predictable within a * percent expected error, it would be better to

set K > 1 because the penalty for error is not so great in this direction as

for K < 1.

25



In regard to the means for adjusting 60 / 0 , one observes from Fig-

ure 3 that 0 = r and 9= 6 + v and, therefore

0 (37)
0

As a result, the switching point is easily adjusted if these quantities are at

one's disposal in a practical system.

B. Stabilizing External Torque

The relative propellant consumption for the case where X is negative

and = 0 is obtained using Eq. (23)

t, (38)
0 8 t K ta n I (n R

Equation (38) is plotted in Figure 12 which shows that the relative propellant

consumption increases monotonically and the consumption with a negative

stabilizing external torque coefficient will always be greater than the con-

sumption without torque.

C. Steady Torque

The relative propellant consumption for the case where X2 = 0 and

c is obtained using Eq. (24)

0

t 0 0 0 (39)
O L 26 -71 >R

0 0

26



2J

To obtain the relative propellant consumption for X 0 and 4 positive

and less than 4 c  it is assumed that for the corrective torque on the left side

of the phase plane, one consumes only

f2 460
0 0

62

as much fuel in reversing 6 as on the right side. The ratio

1+

I0

will then be the relative fuel consumption of this cycle due to the unsyrmrmetric

limit cycle. Then the product of this quantity and the ratio of the coast time

0

t 6o 0

t 4o

should give a reasonable approximation to the relative fuel consumption. Thus

0 0 0 O<j<% (40)

01
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Equations (39) and (40) are plotted in Figure 14, where it is shown that the

fuel consumption of the system can be as small as 1/4 the fuel consumption

without external torques.
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VII. TOTAL PROPELLANT CONSUMPTION

WITHOUT EXTERNAL TORQUE

The following assumptions are made:

1. Steady limit cycle only contributes to propellant consumption.

2. No external torques.

3. Corrective torque application time negligible compared to coast

time.

4. Reaction jets only are used.

One then has the set of equations for a single axis

-28

t 0

0

T T= Nt

4T N

IA6 - TmA t

T T

WT -
sp

30



Simple substitutions yield

WT T 0 (41)
sp 0

31



VIII. HIGHER ORDER EFFECTS

In practical systems the dynamics of the hardware used in the control

system lead to higher than second order system response. Figure 15 rep-

resents a typical single axis system with the transfer function

SK4 K3  S + 1) G 2 (s) G3 (s)

I + (K K K3 R) 1 s + G I (s) G2 (s) G3 (s)

Figure 16 presents a comparison between a second order system,

i. e. , G 1 (s) G2 (s) G3 (s) equals one, and a higher order system. The

phase plane is the result of an analog computer study of a system without a

threshold in the position channel to the valve. The dynamics of the control

system hardware cause the time of switching to lag that of an ideal second-

order system thereby increasing limit cycle rates and, subsequently, fuel

cansumption.

32
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Fig. 15. Attitude control system with nonlinearities and higher order effects.
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Fig. 16. Higher order system effects.
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IX. DESIGN CONSIDERATIONS

A. Minimum Pulse Width

The number of pulses to reverse the direction of motion when corrective

torque is applied needs to be one or more. Some advantage accrues from a

single thrust pulse as was discussed in the section on Powered Trajectories.

If N = 1 in Eq. (8) then

I < T m lAt mi n < 21U (42)

A pulse width can be found which will cause 9 to change its sign and

also which will provide some margin of safety suci that two corrective pulses

will not occur. Choosing a value of torque impulse midway in the range

[Eq. (42)] one could use

Atn 1. 5 I (43)
m

The minimum or threshold pulse width should be at least this small.

B. Maximum and Minimum Pulse -Frequency

If pulse frequency modulation alone is used it is noted that

fmax t (44)
min

when m = 1 (or continuous thrust). The minimum pulse frequency should

be such that I/fmin or the time between pulses at threshold conditions is

long compared with the instrument (and possible shaping network) response

34



times. This is desirable to prevent application of more corrective thrust

impulses than is necessary because of slow information processing by

control system components. If both of the desired conditions (i. e. , fmax

and f m in) cannot be met because of frequency range limitations of pulse

frequency generating devices, it may be desirable to use a combined pulse

frequency and pulse width modulation method in order to extend the modu-

lation factor range of the pulse producing equipment.

C. Adjustments for External Torque

The minimum pulse width should likely be reduced when the vehicle

has external torque acting on it. This can be deduced from curve 1 of

Figure 13; i. e. , it is not desirable to allow the single torque impulse to

govern A4 (unless it corresponds to K = 1). It is probably better from a

design point of view to require something of the order of 10 pulses to achieve

= 2f in order that the adjustment factor i/6 + v predominate in the

determination of relative propellant consumption.

Then again, if i is not accurately known or is time varying in some

random way, it may be better to choose Atmi n to correspond to the optimum

value of K = 1, providing that minimum pulse width can be accurately set

and held time invariant better than i.
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X. CONC LUSIONS

I. In the threshold region or in the vicinity of the origin in the phase

plane, trajectories are or can be piecewise linear, hyperbolic,

parabolic, and elliptic.

2. Minimum pulse size can affect the mean drift rate advantageously or

disadvantageously.

3. There may be an advantage in modulating both pulse width and pulse

frequency in order to reduce the single pulse impulse below Ii/I so

that it is not the controlling factor in the resulting mean drift rate.

4. With destabilizing torque, the vehicle may drift (hyperbolic trajectories)

from positive to negative attitudes or the limit cycle may be such as to

yield only positive or negative values of attitude.

5. Propellant consumption with destabilizing torque is less than propellant

consumption without external torque for values of

m< 1.44 1 (6)

6. Propellant consumption with destabilizing torque is less than propellant

consumption without external torque for values of

0. 83 < < I.Z
0
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if eo / for-the case of no external torque is
0 0

0. 83 1 fiy

7. Propellant consumption with stabilizing torque will be greater than

propellant consumption without external torque for a steady powered

limit cycle with amplitude determined by the threshold magnitudes.

8. Propellant consumption with steady torque is less than propellant

consumption without external torque for

0 < 1

0

9. Higher order effects or additional lags in a single axis attitude control

system cause propellant consumption to be greater than a simple

second order system.

10. Total propellant consumption due to limit cycles in the system without

torque is proportional to the square of the rate measurement threshold

and inversely proportional to the position measurement threshold plus

valve threshold.

11. Minimum pulse width should be made compatible with the rate meas-

urement threshold.

12. Minimum pulse frequency should be low compared to sensor cutoff

frequencies.

13. Something of the order of 10 pulses should be designed for in the time

duration of corrective torque application. This should enable the dead

zone settings of i, 6, and v to independently determine the character

of the limit cycles.
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